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Abstract—Edge nodes (ENs) in Internet of Things commonly
serve as gateways to cache sensing data while providing accessing
services for data consumers. This paper considers multiple ENs
that cache sensing data under the coordination of the cloud. Par-
ticularly, each EN can fetch content generated by sensors within
its coverage, which can be uploaded to the cloud via fronthaul
and then be delivered to other ENs beyond the communication
range. However, sensing data are usually transient with time
whereas frequent cache updates could lead to considerable energy
consumption at sensors and fronthaul traffic loads. Therefore,
we adopt Age of Information to evaluate data freshness and
investigate intelligent caching policies to preserve data freshness
while reducing cache update costs. Specifically, we model the
cache update problem as a cooperative multi-agent Markov
decision process with the goal of minimizing the long-term
average weighted cost. To efficiently handle the exponentially
large number of actions, we devise a novel reinforcement learning
approach, which is a discrete multi-agent variant of soft actor-
critic (SAC). Furthermore, we generalize the proposed approach
into a decentralized control, where each EN can make decisions
based on local observations only. Simulation results demonstrate
the superior performance of the proposed SAC-based caching
schemes.

Index Terms—Internet of Things, age of information, cooper-
ative multi-agent Markov decision process, soft actor-critic

I. INTRODUCTION

With the advancement of wireless access technology, it is
envisioned that hundreds of billions of devices will access
the Internet, forming the so called Internet of Things (IoT)
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[1]. The advent of this paradigm generalizes the accessibility
towards various kinds of IoT sensors (e.g., smart cameras and
temperature sensors), and thus enables intelligent services to
improve human quality of life [2], [3]. However, countless
electronic devices are anticipated to generate a large volume
of traffic loads, which can possibly make networks saturate and
degrade the quality of service. To overcome these challenges,
edge nodes (ENs), e.g., small-cell base stations, are expected to
act as gateways to cache sensing data close to the consumers.
Consequently, it can greatly reduce traffic loads, transmission
delay, and energy cost in IoT sensing networks [4], [5].

Currently, some existing studies have been devoted to
caching policies at wireless networks in terms of optimiz-
ing communication performance criteria, e.g., traffic loads,
latency, and power consumption [6]–[11]. These caching poli-
cies emphasize how to efficiently cache multimedia content
given limited storage at ENs. However, IoT sensors usually
generate sensing data at a relatively small size [12]. Therefore,
each EN can be assumed to have enough storage to cache
content items produced by all sensors in the network [12]. In
this way, each EN can locally satisfy user requests towards
all content items. Moreover, in contrast with multimedia
content that is often in-transient, sensing data cached at ENs
gradually become outdated as time passes. The staleness of
caching content may significantly deteriorate the performance
of IoT sensing services. Indeed, how to preserve data freshness
constitutes the primary challenge in designing caching policies
for IoT sensing. A recently proposed performance criterion
can be adopted to quantify data freshness, namely, Age of
Information (AoI) [13]. The AoI of a content item is defined as
the amount of time that has passed since the last measurement
of this content item. Given the arrivals of user requests, cache
update is needed to reduce the average AoI of caching content
items [13]. Nevertheless, excessive cache updates will generate
considerable energy consumption and challenge the battery life
of sensors. Hence, these characteristics of IoT sensing require
new and efficient caching policies in IoT sensing networks.

A. Related Work

AoI was initially investigated in [13] to evaluate status up-
date for packet delivery between a source node and destination
node. The author derived the average AoI by considering a
simple queuing model. Such a source-destination scenario was
further investigated in [14] under a more complex queuing
system, i.e., M=G=1. The study in [15] also focused on this
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scenario and investigated average and peak AoI. The authors
in [16] studied the optimal policy for packet delivery from a
source to a remote destination by considering an age penalty
function. In general, these works were extensions of the study
in [13], which characterized the average or peak AoI based on
different types of queuing models. Later on, AoI was adopted
to evaluate the performance of IoT sensing networks, which
involved multiple sensors and error-prone wireless links. The
study in [17] investigated the peak AoI under different scales
of IoT networks by considering Bernoulli traffic. Taking into
account sampling cost and update cost, the research in [18]
examined update policies under a single sensor scenario and
multiple sensors scenario, respectively. This line of research
generally attempted to derive analytical expressions of age-
based performance metrics under queuing models, and focused
on performance analysis by utilizing optimization theory.

Some recent works have investigated intelligent policies for
cost-effective caching in IoT sensing networks by applying
reinforcement learning (RL). The authors in [19] considered
a single sensor and proposed to minimize the average AoI
subject to the average number of updates. Treating the model
parameters of neural networks as transient content, the study
in [20] proposed to minimize the average AoI plus cost by
using deep Q-network (DQN). Both studies evaluated cache
update cost by counting the number of content transmissions.
The study in [21] proposed to minimize the average AoI
by considering sensing and transmission energy cost. The
authors in [22] considered cache update at multiple sensors,
and investigated the tradeoff between energy consumption and
AoI via Q-learning. Similarly, the tradeoff between AoI and
energy consumption was also investigated in studies [12], [23].
Moreover, the studies in [24], [25] utilized actor-critic (AC)-
based approaches to investigate how to cache transient content
by considering content update cost. In our preliminary work
[26], we proposed a DQN based cache updating design to
decrease the average AoI as well as energy consumption given
the distinct storage size of IoT sensing data, characteristics
of wireless channels, and time-varying content popularity. All
of these studies focused on cost-effective update policies at
a single EN, which aggregates sensing data generated from
sensors at its coverage only.

B. Contributions

This paper investigates intelligent policies of cost-effective
cache update in the IoT sensing network, where multiple
ENs cache sensing data under the coordination of the cloud.
Compared with prior studies on a single EN that only en-
tails sensors at its coverage [12], [19], [21]–[25], this work
investigates a more general scenario. Specifically, each EN is
likely to communicate with a subset of sensors because of the
short communication ranges at IoT sensors [27]. Thus, each
EN needs to upload content items generated from its coverage
to the cloud so that other ENs beyond the communication
range can download these content items and provide accessing
services for data consumers. Consequently, cache update at
multiple ENs not only requires energy consumption at sensors
but also leads to fronthaul traffic loads. Given limited battery

levels at sensors and capacity of fronthaul links in reality, it
is imperative to find cache update policies that preserve data
freshness while reducing update costs. For this reason, we
consider a more integrative performance metric, involving the
average AoI, energy consumption and fronthaul traffic loads.
In addition, the average AoI in a multiple ENs scenario is
characterized by user requests received at all ENs. We need to
take into account space-time dynamics of content popularity
[28] in comparison to the studies [12], [19], [21]–[23].

The considered scenario results in a multi-agent discrete
decision-making, where the space of the discrete decisions
grows exponentially versus system parameters, e.g., the num-
ber of ENs. Some conventional RL algorithms used in prior
studies, e.g., DQN, suffer from high computational complexity
and brittleness to scalability, which are not efficient in handling
the multi-agent tasks [29]. We therefore devise a novel deep
RL (DRL) approach with an output size linearly increases
w.r.t. these system parameters. The proposed approach utilizes
the idea of the state-of-the-art RL algorithm, similar to the
soft actor-critic (SAC) in [30], that is originally applicable to
continuous decision-making only.

The main contributions of this paper are summarized as
follows.

� We investigate intelligent cache update design at multiple
ENs in IoT sensing, which generalizes prior studies
involving a single EN [12], [19], [21]–[25]. We first
propose a multi-agent DRL framework to minimize the
average AoI of caching content items plus cache update
costs, i.e., transmission energy consumption and fronthaul
traffic loads. We also derive a characterization for average
transmission energy consumption at IoT sensors under an
effective wireless transmission condition.

� To deal with the formulated problem, we devise a multi-
agent discrete variant of SAC with an output size that
linearly increases versus the numbers of ENs and IoT
sensors. The core idea is that we customize the Gumbel-
SoftMax (GS)-sampler to approximately generate differ-
entiable actions. Meanwhile, the utilization of entropy
regularization can effectively enhance exploration, which
assists to prevent premature convergence.

� To reduce the communication overhead between ENs and
the cloud, we further generalize the proposed centralized
algorithm into decentralized control. Particularly, each
EN serves as an independent agent with a decentralized
policy, exploring its caching decisions based on local
observations. We maintain the centralized soft Q-function
at the cloud processor (CP) to augment EN coordination,
favorably improving system reward.

� Simulation results are presented to demonstrate that the
proposed RL approach outperforms existing RL-based
caching policies, and unveil how transmission energy
and fronthaul traffic load considerations compromise data
freshness in IoT sensing networks.

The remainder of this paper is organized as follows. Sec-
tion II introduces the system model. Section III describes
the problem formulation. Section IV develops a centralized
DRL-based cache update scheme, and Section V develops a
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Fig. 1: Illustration of an IoT sensing network.

decentralized DRL-based cache update scheme. Section VI
shows the performance evaluation, and Section VII concludes
the paper.

II. SYSTEM MODEL

As depicted in Fig. 1, consider an IoT sensing network,
in which a total of B ENs are connected to the CP through
wired fronthaul links. Every EN is equipped with a cache unit
and a computing unit, which empower edge caching and edge
computing, respectively. Consequently, such wireless networks
allow ENs to serve as gateways between IoT sensors and data
consumers [24]. More specifically, ENs are capable of caching
sensing data generated by various kinds of sensors within
their communication ranges. Meanwhile, data consumers can
submit their requests to ENs and retrieve corresponding con-
tent for data processing and analysis. Notably, we do not
assume any explicit roles for data consumers. They could
be either static devices (e.g., computers) or mobile devices
(e.g., smartphones, vehicles). For instance, data consumers
can inspect temperatures or humidities of the environment
on mobile applications. For ease of discussion, we assume
that, each EN coordinates F sensors that are randomly dis-
tributed within its coverage. As such, there are a total of
B � F sensors in the network. Each sensor is supposed to
communicate with the nearest EN. Let B = f1; 2; � � � ; Bg
and F = f1; 2; � � � ; B � Fg denote the indices of ENs and
sensors. Moreover, Fb = f(b� 1)F + 1; � � � ; bFg denotes the
indices of the sensors coordinated by the b-th EN. That is,
F = [b2BFb.

A. Age of Information

The system operation time is assumed to be divided into
epochs, i.e., t = 1; 2; � � � . In IoT sensing, each content item
cached at the EN, is generated by a certain IoT sensor. For
instance, content item1 f 2 F implies that this content item is
produced by the f -th sensor. In general, each caching content
item can be temporally updated and replaced by a new version
of the sensing data. We denote the generation epoch for the
version of content item f cached at epoch t by vtf . Evidently,
vtf � t. In addition, we assume that each content item should
record its index and generation epoch, e.g., ff; vtfg, for data
processing. To evaluate data freshness of a content item, we
adopt AoI as the quality of service (QoS) metric, which counts
how many epochs has passed since this content item was

1By slightly abusing the notation, we denote the index of either a content
item or an IoT sensor by f , and f 2 F .

produced. In this way, the AoI of a caching content item f
can be calculated as follows:

otf = maxft� vtf ; 1g;8f 2 F ; (1)

which takes value from a finite range, i.e., f1; 2; � � �Tmaxg;
and Tmax denotes the upper limit, which implies the most
outdated level of a content item [12], [23], [31]. We consider
that each EN is able to receive user requests concerning
content items generated by all of the sensors (e.g., 8f 2 F).
This is reasonable in real applications because data consumers
usually have diverse preferences towards content items. Let
fN t

f;bgf2F;b2B be the number of user requests received by
ENs at epoch t. Consequently, the average AoI to satisfy user
demands at epoch t can be calculated as follows [20]:

Ot =

P
f2F;b2B o

t
fN

t
f;bP

f2F;b2BN
t
f;b

: (2)

As aforementioned, IoT sensing data are transient and gradu-
ally become stale as time passes.

B. Cache Update

To perform cache update, ENs should communicate with
sensors through wireless links. Owing to channel fading, we
assume the following successful transmission condition: data
transmissions between IoT sensors and ENs are successful
only on condition that the received SNR exceeds a pre-
defined threshold �th. Specifically, we assume that orthogonal
channels are scheduled to different sensors. Thus, the received
signal-to-noise (SNR) for sensor f delivering a content item
to the associated EN can be expressed as:

�f =
Pf�

2
f�

2
f

N0B0
;8f 2 F ; (3)

where Pf is transmission power at sensor f ; coefficient �f
denotes the large-scale fading; N0 denotes noise power spec-
trum density; and B0 is the channel bandwidth. In addition,
�f denotes the envelope of the small-scale fading, which is
assumed to follow the Rayleigh distribution with probability
density function P�f

(�f ) =
2�f

� exp(��
2
f

� ), where � > 0.
Subsequently, the average transmission energy consumption
for cache update, determined by channel gain and content size,
is characterized as follows.

Proposition 1 The average transmission energy �Ef at the f -
th IoT sensor (8f 2 F) for dispatching sensing data to the
EN is as follows:

�Ef =
ln 2� Pfsf

ln 2�Rth exp
�
� �th

2�f

�
+B0 exp

�
1

2�f

�
�f (�th + 1)

;

(4)

where sf is the storage size of content item f ; function �f (�)
is defined as:

�f (x) ,
Z 1
x

1

x
exp(�x=(2�f ))dx; (5)
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and �f =
Pf�

2
f�

2N0B0
; and Rth denotes the throughput threshold,

i.e.:

Rth , log2(1 + �th): (6)

Proof. See Appendix A. �
When a cached content item is updated, the associated EN

should deliver the updated content item to the CP via fronthaul.
Thus, when other ENs overhear requests that relate to sensors
out of their coverage, they can fetch these content items
from the CP2; however, this process causes many duplicate
fronthaul transmissions, if these content items are repeatedly
and asynchronously requested by users. To alleviate network
congestions, we therefore allow each EN to pro-actively cache
content items that are generated beyond their communication
range and kept at the CP. Specifically, when a new version of
content item f 2 Fb is uploaded to the CP, other ENs (i.e.,
8b0 6= b) should further prefetch this content item with the cost
of additional fronthaul traffic loads (B � 1)sf . We consider
that the storages of cache units in ENs are sufficiently large
enough to aggregate content items generated by IoT sensors
(e.g., 8f 2 F) in the network because the storage size of
sensing data is often at a small size in practice. In addition,
by using high-speed optical fiber, we assume that data transfer
between the CP and ENs can be completed in a short time [32],
which is negligible compared with the duration of each epoch.
The main notation used in the paper is summarized in Table
I.

TABLE I: Notation

Notation Description

ab Local action at EN b
B Number of ENs
F Number of sensors
�Ef Average transmission energy for delivering content item f
Fb Indices of sensors coordinated by EN b
Nf;b Number of requests for content item f received at EN b
otf AoI of content item f at epoch t
Ot Average AoI to satisfy user demands at epoch t
Pf Transmission power at the f -th sensor
Q(s;a) Q-function
r Reward
sb Local observation of EN b
!1; !2 Importance factors
�(�js) Policy function
 Discount factor
H(�) Entropy operator

As previously stated, since battery levels of sensors and
capacity of fronthaul links are restricted in reality, caching
content should be reasonably updated to achieve a favorable
tradeoff among average AoI, energy consumption, and fron-
thaul traffic load. In view of this, we formulate a cache update
decision-making strategy in the next section.

III. MDP PROBLEM FORMULATION

Our goal is to find cache update policies, which allow
ENs to reasonably update content items under different states,

2In some IoT applications such as collaborative mobile sensing, message
passing among ENs can be completed by fulfilling the maximum mutual
information or minimum entropy to further reduce fronthaul traffic load.

minimizing the long-term average weighted cost. This weighed
cost is supposed to comprise average AoI, transmission energy,
and fronthaul traffic loads.

A. Multi-Agent Cooperative MDP

The average AoI (e.g., (2)) depends critically on the content
popularity distribution at ENs:

p̂tf;b = N t
f;b=

P
f 02F;b2BN

t
f 0;b;8f; b; (7)

which is usually temporally evolving and can be modeled as
a Markov chain [28]. Moreover, updating a caching content
item changes the corresponding AoI state, which influences the
decision-making at the subsequent epochs. In such a dynamic
environment, cache update decisions are dependent across
consecutive epochs. In view of this, we model cache updating
at multiple ENs as a multi-agent cooperative MDP, where all
agents collaborate to optimize a common long-term objective
(e.g., the long-term weighted cost) based on local observations.
Particularly, every EN serves as an agent, and we define the
basic elements of a multi-agent MDP as follows.
� State: we denote state space by S, which contains all

possible states s. Every state s consists of local observa-
tions of all agents, i.e., s = fs1; s2; � � � ; sBg. In the
IoT sensing network, each agent (i.e., EN) is capable
of observing the AoI of every content item and local
user requests. Then, the local state of EN b is defined
as follows:

stb =
�
fotfgf2F ; fp̂tf;bgf2F

�
;8b 2 B; (8)

which is a 2BF -dimensional tuple.
� Action: Let a = fa1;a2; � � � ;aBg denote a joint action,

where local action ab implies which content item3 should
be selected to update at EN b. Accordingly, the local
action space of agent b can be given by Ab = f0g [ Fb;
and the joint action space is given by:

A = [b2BAb: (9)

Particularly, when local action ab = 0, it implies that EN
b remains idle and presents null transmission energy and
traffic loads. Otherwise, the corresponding sensor needs
to upload the current measurement of content item at 2
F into EN b. That is,

ot+1
f = min

�
(otf + 1)� (1� I(f;atb))

+I(f;atb); Tmax

	
;8f 2 Fb;8b 2 B; (10)

where I(�) is an indicator function4. After each agent
takes action atb, the system state becomes st+1 with
transition probability Prfst+1jst;atg at epoch t+ 1.

� Reward: In a multi-agent cooperative MDP, all agents
are expected to share a common reward rt+1, which
unveils how effective a joint action at is [29]. Recall
that our objective is to minimize the average AoI whilst

3The proposed framework can also be generalized to case where multiple
content items are determined to update at each EN. This is, however, at the
cost of larger system bandwidth and energy consumption.

4Given parameters x; y, when x = y, we have I(x; y) = 1; otherwise,
I(x; y) = 0.
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reducing transmission energy consumption at sensors
and network congestions. Consequently, we define the
average weighted cost at each epoch as follows:

Ct+1 =

P
f2F;b2B o

t+1
f N t+1

f;bP
f2F;b2BN

t+1
f;b

+ !1

X
b2B

�Ef
��
f=at

b

+!2

X
b2B

(B � 1)sf
��
f=at

b

; (11)

where the first term on the right-hand side is the average
AoI to satisfy user demands arrived at epoch t + 1;
�Ef
��
f=at

b

stands for the average energy consumption of
uploading the selected content item atb to its associated
EN, and (B�1)sf

��
f=at

b

denotes the additional fronthaul
traffic loads for delivering content item f to other ENs
from the CP; !1 and !2 are non-negative coefficients
to weigh the importance of energy and traffic cost. For
notational convenience, we define �E0 = 0 and s0 = 0. To
reduce the average weighted cost, we design the reward
as rt+1 , R(st+1; st;at), where

R(st+1; st;at) = �Ct+1; (12)

which is a negative value.

Consequently, we aim to find a caching policy ��, which
is able to generate a joint action a given any state s that
maximizes the expected discounted cumulative reward as
follows:

�� = arg max
�

E[V tj�]; (13)

where

V t =
1X
�=0

()�rt+�+1; (14)

and  2 [0; 1) is a discounted factor.
To address problem (13), one can resort to model-based

approaches [33], which usually rely on the knowledge of
Prfst+1jst;atg. However, transition probability is usually
uncertain and difficult to estimate. Even if we could have this
knowledge, our problem is still intractable due to the curse
of dimensionality in multi-agent settings. These challenges
motivate us to explore data-driven approaches, i.e., RL, which
is a consequence of properly utilizing past experiences. In
the following sections, we develop efficient RL algorithms to
handle the formulated problem.

IV. CENTRALIZED MULTI-AGENT DISCRETE SOFT
ACTOR-CRITIC-BASED CACHING

In this section, we develop a centralized RL algorithm for
cache update in IoT sensing network, where the CP acts as
the centralized agent and coordinates caching decisions for
all ENs. We first outline the background of RL and identify
the challenges of conventional approach. Then, we devise an
efficient RL approach, which is a multi-agent discrete variant
of the state-of-the-art RL.

A. Background of Reinforcement Learning

Canonical RL generally aims to estimate the following Q-
function:

Q�(s;a) = [V tjst = s;at = a; ��]; (15)

which indicates the expected cumulative reward after taking
action at under state st, subsequently following policy ��; and
V t is defined in (14). An optimal policy can be characterized
by the following Bellman Optimality.

Lemma 1 An optimal policy �� leads to the following recur-
sive equations [33]:

Q�(s;a) = Es0
�
R(s0; s;a) +  max

a02A
Q�(s0;a0)js;a

�
; (16)

where R(s0; s;a) is the reward function; s0 is the subsequent
state after taking action a under state s; Q�(s;a) denotes the
Q-function by following ��.

Lemma 1 lays the foundation for DQN. As a popular
approach for discrete decision-marking, DQN utilizes deep
neural networks (DNNs) as function approximators to predict
the optimal Q-function. Readers are referred to [34] for more
detail. By adopting this approach, an optimal policy can be
given by the following mapping function:

��(s) , max
a2A

Q�(s;a): (17)

In other words, DQN needs to output the values of Q-function
over all possible discrete actions (i.e., s! RjAj). This practice
results in slow convergence and brittleness to scalability.
Therefore, DQN is difficult to be applied in multi-agent and
high dimensional settings [30].

B. Proposed Multi-Agent Discrete Soft Actor-Critic Learning

SAC is the state-of-the-art RL algorithm, which is a result
of an entropy regularized formalism that augments exploration
[30]. This approach entails an AC framework, which specifies
the stochastic policy and soft Q-function separately. It attempts
to find a stochastic policy that maximizes the expected cumu-
lative reward while taking as many diverse actions as possible.
Consequently, SAC can achieve high sample efficiency [30].
However, the SAC in [30] is only applicable in continuous
settings. We now develop a multi-agent discrete variant of SAC
learning, which is suitable to handle discrete decision-making
especially in high dimensional settings.

Similarly, our objective is to find a stochastic policy �(ajs)
that maximizes the expected cumulative reward plus its en-
tropy, i.e.:

�� = arg max
�

Efst;atg

"
+1X
t=0

()t
�
rt+1 + �H(�(�jst))

�#
;

(18)

where �(�jst) is a categorical distribution indicating the prob-
ability of taking any action under state st; the entropy term
is defined as H(�(�jst)) , Ea

�
� log(�(ajst))

�
; � is the

temperature parameter and controls the magnitude of entropy
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regularization. In general, a larger � prompts the agents to
carry out a more random exploration in decision making.

Accordingly, the soft Q-function can be defined as follows:

Q(s;a) = E

"
V t + �

+1X
�=1

()�H(�(�jst+� ))
��st = s;at = a

#
;

(19)

where V t is the discounted cumulative reward, given by (14).
This further gives rise to the soft value function

V (s) = Ea��(�js) [Q(s;a)� � log �(ajs)] ; (20)

where the expectation is taken over an action a which is drawn
from the distribution �(�js).

According to Lemma 1, we have the similar recursive
equality as follows:

Q(st;at) = Est+1

�
rt+1 + V (st+1)

�
: (21)

To pave the way for the multi-agent discrete SAC (MADSAC),
we introduce the Soft Policy Improvement [30].

Lemma 2 Given a policy �old and soft Q-function Qold(s;a)
with a finite action space A, a new policy �new is given by:

min
�0

DKL

�
�0(�js)k exp(Qold(s; �)=�)=Z(s)

�
;8s 2 S; (22)

where DKL(�k�) denotes the Kullback-Leibler divergence5,
and the normalization factor Z(s) =

P
a exp(Qold(s;a)=�).

Then, it leads to Qnew(s;a) � Qold(s;a) for any (s;a) 2
S �A [30], [35].

Following the elementary steps of the SAC in [30], we
consider a parameterized Q�(s;a) and policy ��(�js), where
� and � are parameters of some function approximators, e,g.,
DNNs. Since the soft value function can be expressed by (20),
we do not incorporate a separate function approximator here.
In addition, Q�(s;a) denotes a mapping with unit output,
i.e., (s;a)! R, instead of the number of all possible discrete
actions. This is because we can solely use policy function to
generate decisions.

To confine the output of stochastic policy ��(�js) in multi-
agent RL, we first consider the following decomposition:

��(ajs) = �b2B ��(abjs);8a 2 A; s 2 S; (23)

where a = fa1;a2; � � � ;aBg. Accordingly, we can de-
vise a single function approximator to simultaneously learn
the probabilities of taking local actions, e.g., ab 2
Ab;8b 2 B, with output dimension

P
b2B jAbj. In addition,P

ab2Ab
��(abjs) = 1; for 8b 2 B. In this way, the decisions

of the individual agents can be jointly made by a (centralized)
agent conditioned on given state s.

Then, on the basis of (20)-(22), we train the parameters of
the above functions, f�;�g, by using historical experiences,
e.g., �t = (st;at; rt+1; st+1). We use the Replay Buffer (RB)
to store some recent experiences, i.e., �t 2 �. Specifically,
we can train the policy function according to Soft Policy

5Given two categorical distributions �1; �2, we have DKL(�1k�2) =P
x �1(x) log

��1(x)
�2(x)

�
.

Improvement. By omitting the normalization factor Z(�) in
(22), the policy parameter (i.e., �) can be trained by adopting
stochastic gradient descent to minimize the following loss
function:

J�(�) = Est��

�
Ea���

[� log(��(ajst))�Q�(st;a)]
�
;

(24)

where the expectation over st can be approximated by drawing
samples from the RB. However, (24) incorporates an expec-
tation over actions following policy distribution ��(�jst). A
challenging issue is that the gradient w.r.t. � can not be
backpropagated in a normal manner if we directly utilize
��(�jst) to generate samples. To deal with it, we resort to
the reparameterization trick [36].

The core idea of our approach is to find action samples that
are differentiable w.r.t. the policy parameter �. To proceed, we
first introduce auxiliary random variables fgi;b;8i 2 Ab; b 2
Bg, which are i.i.d. and follow the Gumbel distribution, e.g.,
Gumbel(x) = exp(�(x + exp(�x))). With these Gumbel-
distributed variables, we arrive at the following lemma.

Lemma 3 Given a stochastic policy �� for a multi-agent dis-
crete decision-making, a joint action â = fâ1; â2; � � � ; âBg
can be generated as follows:

âb = arg max
i2Ab

[gi;b + log��(ijs)];8b 2 B: (25)

That is, Prfâjsg = ��(âjs).

Proof. See Appendix B. �
The above lemma is an extension of the results in [36]. The

Gumbel distribution is commonly used to model the maximum
of a group of samples drawn from some distribution. By using
Gumbel-distributed variables fgi;bg, we can always calculate
an action sample â via (25) with the probability ��(âjs).
Consequently, the sample action â is a function of the policy
parameter �. Owing to the involvement of arg max, â attains
an ordinary value that is non-differentiable w.r.t. �. For this
reason, we still cannot perform stochastic gradient descent.
To cope with this issue, the arg max in (25) can be further
approximated by a smooth operation, e.g., SoftMax, resulting
in a GS-sampler.

Corollary 1 Suppose vector zb = [zi;b] 2 RjAbj;8b 2 B,
where each element is given by

zi;b =
exp((gi;b + log(��(ijs)))=c0)P

j2Ab
exp((gj;b + log(��(jjs)))=c0)

;8i 2 Ab;8b 2 B;

(26)

where the SoftMax coefficient c0 > 0. Then, when c0 goes to
0, zb approaches a unit vector with one element being 1 and
all other elements being 0, 8b 2 B.

The motivation of Corollary 1 is to encode ordinary and
non-differentiable actions calculated via (25) to unit vectors
approximately, which are differentiable w.r.t. �. As such, we
are capable to generate action samples from a categorical dis-
tribution ��(�js) via GS-sampler, i.e., GS(��(�js)). Toward
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Algorithm 1 Centralized Multi-Agent Discrete SAC-Based
Cache Update

1: Initialize soft Q-function parameters �1;�2, policy pa-
rameter �

2: Initialize parameters of target networks ��i  �i, i = 1; 2
3: for t = 0; 1; 2; � � � do
4: Observe s and take action a � ��(�js)
5: Observe s0 and r
6: Store � = (s;a; r; s0) in RB
7: procedure TRAINMADSAC
8: Randomly draw a batch of N experiences as �N
9: for each � = (s;a; r; s0) 2 �N do

10: Calculate target values: y� = r +
(mini=1;2Q��i

(s0;a0) � � log ��(a0js0)), where
a0 = GS(��(�js0))

11: end for
12: Update �i by taking a one-step gradient descent

of 1
N

P
�2�N

(Q�i
(s;a)� y�)2, for i = 1; 2

13: Update � by taking a one-step gradient descent of
1
N

P
�2�N

�
mini=1;2Q�i

(s; GS(��(�js))) �
� log ��(GS(��(�js))js)

�
14: Update temperature � by taking a one-step gradi-

ent descent of
� 1
N

P
�2�N

�
�

log ��(GS(��(�js))js)� �H
�

15: Update parameters of target networks ��i  ��i+
(1� �)��i , for i = 1; 2

16: end procedure
17: end for

this end, the policy parameter � can be updated by utilizing
stochastic gradient descent to minimize loss function J�(�).

Regarding the updates of soft Q-function and temperature
parameter �, the procedure exactly follows the steps in [30].
On the basis of Bellman optimality and (21), the parameter
of the soft Q-function can be updated by minimizing the
following loss term [30]:

JQ(�) = E�t��

h�
Q�(st;at)� (rt+1 +  �V (st+1))

�2i
;

(27)

where the target value �V (st+1) is given by:

Ea���

�
Q��(st+1;a)� � log ��(ajst+1)

�
; (28)

and Q��(s;a) is the target network with parameter �� being
updated in the soft copy manner. That is, ��  �� + (1 �
�)��, where step size � is a small positive value to stabilize
network training [37]. The temperature parameter � is updated
by minimizing the following term:

J(�) = Est��

�
Ea��[��(log(��(ajst))� �H)]

�
; (29)

where the target entropy �H is a constant and denotes the
desired expected entropy [30].

C. Algorithm Implementation

We present the centralized algorithm implementation for
cache update in IoT sensing network, i.e., MADSAC-
centralized control (MADSAC-CC). A workflow is illustrated

in Fig. 2a. The CP plays a role of the centralized agent and
trains a centralized policy for all ENs. Accordingly, each EN
should first transfer its local observations (e.g., stb;8b 2 B)
to the CP every epoch. After collecting local observations,
the CP returns local actions to each EN separately (e.g.,
atb;8b 2 B). Hereunder, we describe network design and
algorithm implementation.

Network Design: Notably, the update of the soft Q-function
entails bootstrapping (e.g., (27) and (28)), which inevitably
leads to an overestimation issue [38]. To overcome this
challenge, we adopt a clipped double Q-learning approach,
where two separate Q-networks are concurrently trained, and
the minimum of the outputs produced by the two networks
is the estimate of the soft Q-function. This approach can
reduce the variance of the overestimation error and offer stable
target values to update policy parameters [38]. Subsequently,
we denote the parameterized Q-functions by Q�1

(s;a) and
Q�2

(s;a). Note that, the joint action a consists of a number
of B unit vectors. We further maintain a policy network to
output a B(F + 1)-dimensional vector, where each element
respectively corresponds to Prfabjstg; 8ab 2 Ab;8b 2 B.

Algorithm Training: The CP maintains the RB, which has a
finite capacity and can store the recent experiences for network
training. Once the RB is fully loaded, we should replace the
most outdated experience �t by the latest one. The concrete
implementation steps are shown in Algorithm 1. At every iter-
ation, we need to randomly draw a mini-batch of N samples
to approximate the expectation terms in J�(�); fJQ(�i)g and
J(�). Particularly, steps 12 - 14 account for the updates of the
soft Q-function parameters �i; i = 1; 2. We estimate the target
values Ea���

[Q��i
(st+1;a)�� log ��(ajst+1)] in JQ(�i) by

steps 11-13. Steps 15 - 16 carry out the updates of � and �,
where action samples in J�(�) and J(�) are produced by the
GS-sampler. All parameters, i.e., f�1;�2;�; �g, are trained by
using stochastic gradient descent with proper learning rates.

D. Computational Complexity Analysis

The computational complexity is primarily determined by
the network architectures of the Q-networks and policy net-
works. Suppose a total of Hc fully connected neural networks
are being used as the hidden layers for the centralized soft
Q-function, where the h-th hidden layer contains nch neu-
rons. The number of neurons in the input layer is specified
by the dimension of the state and joint action, which is
B(BF + 2F + 1). The number of neurons in the output layer
is 1. Therefore, the numbers of weights in the input layer,
the h-th (2 � h � Hc � 1) hidden layer, and the final
hidden layer in turn are B(BF + 2F + 1)nc1, nch�1n

c
h and

ncHc
. Regarding the policy network, we adopt Ha hidden fully

connected layers, where the h-th hidden layer contains nah
neurons. Thus, the numbers of weights in the input layer, the
h-th (2 � h � Ha�1) hidden layer and the final hidden layer
are BF (B + 1)na1 , nah�1n

a
h and B(F + 1)naHa

, respectively.
Suppose that the computational complexity to train a single
weight is W . Accordingly, the computational complexity of
MADSAC-CC is O(W [B(BF+2F+1)nc1+

PHc

h=2 n
c
h�1n

c
h+

ncHc
+ BF (B + 1)na1 + B(F + 1)naHa

+
PHa

h=2 n
a
h�1n

a
h]),
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Fig. 2: Diagrams of algorithm implementations.

which increases linearly with the number of sensors, F , and
quadratically with the number of ENs, B.

In comparison, the conventional DQN entails a Q-network
that contains (F + 1)B neurons in the output layer. We
consider H fully connected neural networks being imple-
mented, where the h-th layer contains nh neurons. Similar
to the above analysis, the computational complexity is given
by O(W [BF (B + 1)n1 +

PH
h=2 nh�1nh + (F + 1)BnH ]),

which grows polynomially with the number of sensors and
exponentially with the number of ENs.

Remark 1 In a nutshell, the key features of the proposed
approach are the utilization of a GS-sampler and entropy
regularization. On the one hand, by approximately encoding
ordinary values of local actions into unit vectors, the output
of the policy network is B(F +1), which significantly reduces
the size of the neural networks. On the other hand, the
entropy-regularized formalism used in the proposed approach
can enhance exploration and improve performance. That is,
one can efficiently gather enough experiences to infer better
actions compared with conventional RL algorithms [30], [33].

It is worth mentioning that, when policy network is well-
tuned, it can be solely utilized to select actions for all ENs.
However, the centralized control essentially requires the CP
to first aggregate local observations at ENs and then distribute
caching decisions back to ENs at every decision-making
epoch, which inevitably introduces very high communication
overhead.

V. DECENTRALIZED MULTI-AGENT DISCRETE SOFT
ACTOR-CRITIC-BASED CACHING

To reduce communication overhead suffered from the cen-
tralized control, we develop a decentralized MADSAC-based
caching scheme. Particularly, we devise decentralized policies
for each agent to locally generate caching decisions, while
utilizing the centralized soft-Q function to globally optimize
these decentralized policies.

A. Proposed Decentralized Multi-Agent Discrete Soft Actor-
Critic Learning

To generalize the proposed discrete variant of the SAC
into the decentralized control, we maintain B parameterized
stochastic policies for each agent, i.e., ��b

(�jsb), where �b
denotes the parameter of the corresponding function approx-
imator, 8b 2 B. According to the principle of the SAC,
the decentralized MADSAC learning attempts to optimize the
following entropy-regularized problem:

max
f�bg

Efst
bg;fa

t
bg

"
+1X
t=0

()t
�
rt+1 + �

X
b2B

H(��b
(�jstb))

�#
:

(30)

Thus, the centralized soft-Q function can be defined as:

Q(fsbg; fabg)

= E
�
V t +

+1X
�=1

X
b2B

()��H(��b
(�jst+�b ))

��stb = sb;a
t
b = ab;8b 2 B

�
:

(31)

Accordingly, we further maintain a parameterized soft Q-
function Q�(fsbg; fabg), which can be applied to refine local
(decentralized) policies. As such, policy parameters f�bg can
be trained by minimizing the following loss function:

J�(f�bg) = Efst
bg��

�
Eab���b

�X
b2B

� log(��b
(abjstb))

�Q�
�
fstbg; fabg

���
: (32)

To update �, we follow the centralized MADSAC step and
minimize the following loss:

JQ(�) = E�t��

h�
Q�
�
fstbg; fatbg

�
� (rt+1 +  �V (fst+1

b g))
�2i

;

(33)
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Algorithm 2 Decentralized Multi-Agent Discrete SAC-Based
Cache Update

1: Initialize centralized soft Q-function parameters �1;�2,
policy parameters f�bg

2: Initialize parameters of target networks ��i  �i, i = 1; 2
3: for t = 0; 1; 2; � � � do
4: Observe sb and take action ab � ��b

(�jsb) for b 2 B
5: Observe s0b for b 2 B and reward r
6: Store � =

�
fsbg; fabg; r; fs0bg

�
in RB

7: procedure TRAINMADSAC
8: Randomly draw a batch of N experiences as �N
9: for each � =

�
fsbg; fabg; r; fs0bg

�
2 �N do

10: Calculate target values: y� = r +
(mini=1;2Q��i

(fs0bg; fa0bg) � �
P
b log ��b

(a0bjs0b)),
where a0b = GS(��b

(�js0b))
11: end for
12: Update �i by taking a one-step gradient descent

of 1
N

P
�2�N

(Q�i
(fsbg; fabg)� y�)2, for i = 1; 2

13: Update �b by taking a one-step gradient descent
of 1

N

P
�2�N

�
mini=1;2Q�i

(fsbg; fGS(��b
(�jsb)g)) �

�
P
b log ��b

(GS(��b
(�js0b))js0b)

�
14: Update temperature � by taking a one-step gradi-

ent descent of
� 1
N

P
�2�N

�
P
b

�
log ��b

(GS(��b
(�jsb))jsb)� �H

�
15: Update parameters of target networks ��i  ��i+

(1� �)��i , for i = 1; 2
16: end procedure
17: end for

where the target value �V (fst+1g) is given by:

Eab���b

"
Q��(fst+1g; fabg)� �

X
b2B

log ��b
(abjst+1

b )

#
;

(34)

and Q��(fsbg; fabg) is the target network with parameter
�� being slowly updated every epoch. Notably, the target
value in (34) is generally not equivalent to the target value
in the centralized control, i.e., (28), because ��(ajst+1) 6=P
b2B log ��b

(abjst+1
b ) usually holds. Finally, the temperature

parameter � can be updated similarly to (29). Likewise, the
expectation in (32)-(34) can be approximated by using samples
drawn from the RB or produced by the GS-sampler. We present
the algorithm implementation of MADSAC-decentralzed con-
trol (MADSAC-DC) in the ensuing subsection.

B. Algorithm Implementation

As illustrated in Fig. 2b, the proposed MADSAC-DC op-
erates as follows: in the training procedure, each EN needs
to upload local observations to the CP, which then globally
optimizes policy parameters. Again, we adopt the technique of
the clipped double Q-learning, and maintain two Q-networks
with parameters �i; i = 1; 2. The training steps are sum-
marized in Algorithm 2. Similarly, at every iteration, we
draw a batch of experiences to estimate the expectation in
loss functions, J�(f�bg), fJQ(�i)g and J(�). Parameters �1

and �2 are updated in steps 11-14, whilst f�bg and � are
updated in step 15 and 16, respectively. Different from the
centralized implementation, the decentralized policy for each
EN is conditioned on its local observation instead of the state.
Therefore, we have to sample every local action ab from
a decentralized policy, e.g., GS(��b

(�jsb): Finally, the CP
should deliver the well-trained policy parameters to each EN
for online decision-making. At this stage, each EN can produce
local actions based on local observation without introducing
heavy fronthaul signaling overhead. Since all the decentralized
policies are trained by the CP with the centralized soft-Q
function, the computational complexity of MADSAC-DC is
comparable to MADSAC-CC, e.g., grows quadratically with
the number of ENs and linearly with the number of sensors.

Remark 2 Moreover, we can generalize decentralized multi-
agent SAC learning into a value decomposition-based di-
agram. Similar to conventional value decomposition-based
approaches (e.g., the VDN, QMIX, and QTRAN in [39],
[40]), the centralized soft Q-function can be factorized into
individual soft Q-functions, which are used to fine-tune the
decentralized policies for all ENs. This diagram provides
an efficient way to train decentralized policies. Compared
with the conventional approaches, the utilization of entropy
regularization in the individual soft Q-function is envisioned
to encourage exploration and improve performance.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the pro-
posed algorithms under various kinds of scenarios. Unless
otherwise stated, the default setting is as follows: three ENs
are considered in an IoT sensing network; each EN has
a communication range of 100 m and can coordinate 10
randomly distributed sensors; the storage of every content
item is randomly generated within [0:05; 0:1] GB. The range
of the AoI is [1; 50]. Concerning communications between
IoT sensors and ENs, the transmission power is 23 dBm
at each sensor; the path loss is �(148:1 + 37:6 log10 d) dB
with d being the distance in km; the channel bandwidth is
10 MHz [7]; the antenna gain is 10 dBi; the log-normal
shadowing parameter is 8 dB; the received SNR threshold
is specified by �th = 10 dB; and the parameter � of the
Rayleigh distribution equals 1. Furthermore, the space-time
popularity dynamics of user requests are modeled as follows:
user requests at distinct ENs exhibit individual content pop-
ularity distributions; at each EN, there are at most 100 users
making requests according to a class of Zipf distributions [28],
namely, pf;b = ���b

f;b =
P
f 02F �

��b

f 0;b ;8f; b; where �b denotes
the skewness factor that is selected from f0:5; 1; 1:5; 2g, and
f�f;bg denote rank orders of content items that are dynamically
evolving by following certain transition probability matrices
[28]. In addition, we consider !1 = !2 = 1.

In the subsequent subsections, we consider the following
algorithms for comparison:
� DQN: This algorithm is widely used in prior works

(e.g., [12], [23]) to handle update at a single EN. It
is expected to obtain near-optimal results in small-scale
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settings, which attempts to validate the effectiveness of
the proposed algorithm.

� AC: We consider a popular AC-based algorithm from
[37]. To apply it in the discrete decision-making, similar
to the proposed algorithms, we again adopt the GS-
sampler and recast the output into low dimensional
vectors. The objective of this approach is to evaluate
the potential of entropy regularization in augmenting
exploration.

The above-mentioned algorithms operate in the centralized
manner, similar to MADSAC-CC.

A. Learning Curves of the Proposed Algorithms

We design either Q-networks or policy networks as five-
layer neural networks, which consist of an input layer, three
hidden layer, and an output layer, respectively. To stabilize
training, the polynomial learning rate policy is adopted to
train networks (readers are referred to [41] in detail.). We
summarize key parameters of algorithm implementation in
Table II. To ensure fairness, all algorithms are implemented
by the same configuration.

We illustrate the learning curves of all the algorithms
in Fig. 3a and 3b, respectively. Specifically, the algorithm
performance is presented in terms of average reward (shown
by learning curves) and standard deviation (shown by shaded
areas). All of the results are obtained by applying the moving
average, i.e.,

Pt
�=t�T+1 r

� , where T = 5000. In Fig. 3a,
we consider a single agent setting (i.e., EN) to validate the
effectiveness of the proposed discrete variant of SAC. Clearly,
the proposed MADSAC converges very fast and achieves
comparable final results as that of DQN, whilst AC takes a
much longer while to converge. Moreover, we can observe
some sudden drops in the curve of AC, whereas the curve of
the proposed one is generally flat. The observation indicates
that the proposed approach is able to learn more stably. We
further consider a multi-agent setting with three ENs in Fig.
3b. Evidently, the proposed algorithms outperform DQN and
AC. At the initial stage, the rewards of MADSAC-CC and
MADSAC-DC increase faster than AC, and shortly converge
to almost the same level. We can observe notable gaps between
final results of the proposed algorithms and AC. This finding
implies that the entropy-regularized objective in the proposed
approach is able to circumvent premature convergence some-
how. However, DQN fails to make meaningful progress in
the multi-agent setting. The reason is that an explosive action
space makes it difficult for DQN to estimate the values of the
Q-function. These results confirm the remarkable performance
of the proposed algorithms in terms of convergence speed and
final performance.

B. Scalability

In this subsection, we investigate the impacts of system pa-
rameters and study the scalability of the proposed algorithms.
In what follows, we use the average weighted cost as the
performance criterion, i.e., defined in (11). All of the results
are obtained by averaging over 10000 epochs after DNNs are
well-tuned.

TABLE II: Parameters for algorithm implementations

Parameters Value
Number of neurons in each hidden layer 128

Optimizer Adam
Initial learning rate for Q-networks 0.01

Initial learning rate for policy networks 0.001
Power factor for decreasing learning rates 0.9

Memory capacity of RB 5000
Mini-batch size 100

Step size for updating target networks 0.001
Discount factor 0.99

Particularly, we first vary the number of agents (e.g., ENs)
and plot the results in Fig. 4a. In general, the proposed
decentralized algorithm performs close to the centralized one.
This is because the use of a centralized critic in MADSAC-DC
can effectively train local policies, which favorably augments
EN collaboration and performance. Moreover, the proposed
centralized and decentralized algorithms always obtain better
results than the AC-based scheme. This phenomenon demon-
strates the effectiveness of using an entropy regularizer to
prevent premature convergence. As the number of agents
becomes large, the performance of the proposed decentralized
algorithm gradually degrades due to the restriction of local
observations. It is worth mentioning that, when five or more
ENs are considered, it is not practical to implement DQN
due to the extremely large number of actions. Moreover, we
illustrate the results of each considered metric (achieved by
MADSAC-CC) in Fig. 4b. As can be seen, the average AoI
becomes larger when more ENs are available. The reason is
that more content items are involved with the growing number
of ENs. The update costs (e.g., energy cost and traffic loads)
also become larger as the number of ENs increases. However,
when more than five ENs are installed, the update costs slightly
decrease. Our conjecture is that, under a scenario with a large
number of ENs, the summation of energy cost and traffic
load may contribute to a much larger fraction of the objective
function; thus, content items with rather small sizes and low
transmission energy may be selected to balance the overall
weighted cost.

To further investigate the scalability, we carry out ex-
periments by changing the number of sensors within the
communication range of each EN. As shown in Fig. 5a, the
weighted cost, achieved by the decentralized design, is quite
close to that of the centralized one. This observation further
corroborates the remarkable performance of the decentralized
control. As anticipated, MADSAC-CC and MADSAC-DC
achieve much lower average weighted costs than DQN. The
reason being that the conventional DQN needs to estimate the
Q-function over all discrete state-action pairs, which causes
the output size of the neural networks to be exponentially
large. Specifically, when 20 sensors are deployed at the
coverage of each EN, the proposed DRL schemes are able
to reduce the weighted cost by 54.23%, 50.94%, respectively,
compared with the DQN-based scheme. Notably, when 25
sensors are considered, the resulting number of discrete actions
is 17576, making DQN implementation impossible. Similarly,
the proposed DRL schemes outperform the AC-based scheme
over the entire horizontal axis. However, we should mention
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Fig. 3: Learning curves.

that the utilization of entropy-regularization in the proposed al-
gorithms does not alway have a remarkable advantage over the
conventional RL. The AC based scheme sometimes achieves
comparable performance as the proposed ones, e.g., in the case
of 15 sensors. We further show the results of each performance
criterion (achieved by MADSAC-CC) in Fig. 5b. The average
AoI gradually becomes large because of the enlargement of
content catalog. Average transmission energy and traffic loads
exhibit similar results to what has been found in Fig. 4b.

The above-mentioned simulation results confirm the su-
periority of the proposed discrete variant of SAC, and the
generalization of the decentralized approach. In the ensuing
section, we only implement MADSAC-CC and focus on the
tradeoff among the considered performance criteria.

C. Tradeoff among AoI & Energy Consumption & Traffic
Loads

In this subsection, we investigate the tradeoff among average
AoI, transmission energy consumption and fronthaul traffic
loads. To benchmark how energy consumption and traffic load
consideration compromises the performance of data freshness,
we consider two schemes as follows. i) Age-Optimal Scheme:
We only optimize the average AoI without incorporating cache
update costs; ii) Random Scheme: at each epoch, we randomly
update one content item at each EN without being aware of
the tradeoff among the considered performance criteria. The
proposed scheme is referred to as cost-effective scheme.

We first carry out experiments by varying !1 and illustrate
the results of average AoI, transmission energy consumption,
and fronthaul traffic loads in Fig. 6 - 8, respectively. Besides,
!2 is fixed as the default value (i.e., 1). Evidently, when
we enlarge the weight for transmission energy (i.e., !1), the
average AoI continuously grows high whereas transmission
energy drops off quickly. This finding implies that the cost-
effective scheme attempts to reduce the frequency of content
update. For this reason, it leads to the reduction of traffic loads
simultaneously, although the associated weight is fixed as a
constant.

We then conduct simulations by changing !2 and fixing
!1 = 1. The results are depicted in Fig. 9 - Fig. 11. It
can be observed that, with the increment of !2, fronthaul
traffic loads decrease gradually while the average AoI becomes
increasingly large. Similarly, we conjecture that the update
of the content becomes less frequent, which somehow results
in more outdated content items cached at ENs. In addition,
it should be noted that fronthaul traffic loads, achieved by
enlarging !2 (shown in Fig. 11), decreases faster than that in
Fig. 8. For instance, when increasing !2 up to 10, there is a
67.92% reduction of traffic loads, which is much larger than
42.16% achieved by enlarging !1. This is because, when we
enlarge !2, the cost-effective scheme is likely to reduce the
update frequencies of content items having large storage size.
A similar conclusion can be drawn towards the degradation of
energy consumption by tuning !1. When we set !1 or !2 to
be larger than 10, the reduction of energy consumption and
fronthaul traffic loads are quite limited in comparison to age-
optimal scheme or random scheme; it however leads to much
larger AoI compared with baselines.

Finally, we illustrate the impact of the number of updates at
each EN on Fig. 12. As can be observed, with the increase in
the number of updates per epoch, the average AoI decreases
gradually whilst the update costs, e.g., average energy con-
sumption and traffic load, become larger. Note that when we
perform three updates or more, the average AoI decreases
slowly. This is because some updated content items may
receive low attention from users under these circumstances.
Therefore, it is likely that updating unpopular content may
reduce the average AoI marginally yet at the cost of much
more update costs. In practical system designs with energy
provision and fronthaul capacity constraints, we need to rea-
sonably select the number of updates to confine the update
cost whilst minimizing the average AoI.

VII. CONCLUSION

In this paper, we have developed a multi-agent reinforce-
ment learning framework for cache update in IoT sensing
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Fig. 4: Impact of the number of ENs.
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Fig. 5: Impact of the number of IoT sensors at each EN.
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Fig. 6: Average AoI versus the energy factor !1.
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Fig. 7: Average transmission energy consumption versus the
energy factor !1.
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Fig. 8: Average fronthaul traffic loads versus the energy factor
!1.
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Fig. 9: Average AoI versus the traffic factor !2.
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Fig. 10: Average transmission energy consumption versus the
traffic factor !2.
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Fig. 11: Average fronthaul traffic loads versus the traffic factor
!2.
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Fig. 12: Impact of the number of updates at each EN per
epoch.

networks. The objective of this framework is to minimize
the weighted average age of information plus energy cost
as well as fronthaul traffic loads. We have derived a char-
acterization of energy consumption for content delivery. To
cope with the discrete multi-agent decision-making, we have
proposed a novel reinforcement learning approach with low
space complexity. Simulation results have indicated that the
proposed algorithms significantly outperform deep Q-network
and traditional actor-critic approaches as the number of edge
nodes or sensors increases; and the proposed decentralized
caching scheme obtains satisfactory performance compared
with the centralized one. The developed approach also has
great potential to address many other multi-agent discrete
decision-making problems in communication and networking.

APPENDIX

A. Proof of Proposition 1

Given P�f
(�f ) =

2�f

� exp(��
2
f

� ), the squared envelope of
the small scale fading �2

f follows an exponential distribution,
1
� exp(��

2
f

� ). Therefore, the distribution of the received SNR
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�f is given by P(�f ) = 1
2�f

exp(� �f

2�f
). Recall that content

transmissions are effective only when the received SNR ex-
ceeds �th. As a result, the expected throughput �Rf can be
calculated as follows:

�Rf =

Z 1
�th

B0 log2(1 + �f )P(�f ) d�f

=
B0

ln 2

Z 1
�th

log(1 + �f )
1

2�f
exp

�
� �f

2�f

�
d�f

= � B0

ln 2

Z 1
�th

log(1 + �f ) d exp

�
� �f

2�f

�
= Rth exp

�
� �f

2�f

�
+
B0

ln 2

Z 1
�th+1

exp

�
1� �f

2�f

�
1

�f
d�f

= Rth exp

�
� �f

2�f

�
+
B0

ln 2
exp

�
1

2�f

�
�f (�th + 1);

where function �f (�) is defined by (5). Given the content size
sf and transmission power Pf , the average energy consump-
tion can be given by �Ef = Pfsf= �Rf . This completes the
proof.

B. Proof of Lemma 3

For notational convenience, we denote �i = ��(ijs), and
$i = gi;b + log�i;8i 2 Ab; b 2 B. Then, it follows that
âb = arg maxi2Ab

$i. We calculate the following probability
Prfâb = ijsg = Prf$i � $j ;8j 6= ig:

=

Z 1
�1

�j 6=if$i � $j j$igPrf$igd$i

=

Z 1
�1

�j 6=i exp (� exp (�$i + ln�j))

exp (�($i � ln�j + exp (�($i � ln(�i))))) d$i

=

Z 1
�1

exp(��j 6=i�j exp(�$i))

�i exp (�($i + �i exp(�$i)) d$i

(a)
=

Z 1
�1

�i exp (�$i � exp(�$i)) d$i

= �i

for 8i 2 Ab; b 2 B, where step (a) is a result ofP
i2Ab

��(ijs) = 1. Then, we conclude that Prfâjsg =
�b2B Prfâbjsg = �b2B ��(âbjs), which completes the proof.
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