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Industrial 4.0
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Smart Factory
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Spectrum
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Spectrum Scarcity

How to manage this massive wireless access under the constraint of limited
spectrum resources?
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Spectrum Intelligent Radio

� (S1) Human-oriented classical signal processing1

� (S2) Machine learning (ML)
� (S3) Contextual adaptation (CA)

1P. Cheng, Z. Chen, M. Ding, Y. Li, and B. Vucetic, “Spectrum intelligent radio: technology,
development and future trends,” IEEE Communications Magazine, vol. 58, no. 1, pp. 12-18, Jan.
2020.
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Stream 1: Human-Oriented Classical Signal Processing
(1/2)
� Spectrum sensing

� Various signal processing methods focus on a single parameter
� Assume a homogeneous spectrum state
� Hard to handle complex RF environments
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Stream 1: Human-Oriented Classical Signal Processing
(2/2)
� Decision Making

� Conventional studies use model-dependent approaches to obtain structured
solutions, which require the knowledge of the parameters in the network.

� The complexity of spectrum environment often makes it impossible to gain enough
knowledge in advance.
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Stream 2: Machine Learning
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Level 1: Perception
� Involve the autonomous multiple feature identification of signals in an unknown

complicated RF environment2

� Observe network heterogeneity and dynamics from different perspectives.

2R. Zhang, P. Cheng*, Z. Chen, Y. Li, and B. Vucetic, “A learning-based two-stage spectrum
sharing strategy with multiple primary transmit power levels,” IEEE Transactions on Signal
Processing, vol. 67, no. 18, pp. 4899-4914, Sep. 2019.
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Performance of the PT Power Level Identification
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Figure: The probability of correct PT power level prediction in the first stage (Pc).
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Vision

� Future networks demand automated extraction of far more features with no or
minimal prior information.

� The physical layer information (spectrum occupancy, transmit power level,
modulation, constellation, and channel coding) and upper layer features
(application types, network topology, and communication protocols) should be
mined under a unified framework.

� Automate the extraction of a multitude of features. This represents a new trend
for RF landscape perception.
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Level 2: RF Environment Understanding

� To learn the structure of the RF environment in a large-scale complex network,
and establish the ongoing RF activity map3

� Deploy many static SUs at different locations to carry out spectrum sensing
simultaneously

3Y. Xu, P. Cheng*, Z. Chen, Y. Li, and B. Vucetic, “Mobile collaborative spectrum sensing for
heterogeneous networks: A Bayesian machine learning approach,” IEEE Transactions on Signal
Processing, vol. 66, no. 21, pp. 5634–5647, Nov. 2018.
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Proposed Learning Model

� Exploit the mobility nature inherent to most wireless devices to explore the
spectrum footprint across a network

� BP-SHMM
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Prediction of Spectrum Availability
� Prediction of PUs’ locations and transmission ranges based on classification results
� Refinement based on previous predictions
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PUs’ location and Transmission Range Prediction

Figure: Prediction results for N ′ = 2 and N ′ = 3, respectively.
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Vision

� Focus on the spectrum heterogeneity

� How to handle the envisioned scenario with fast-changing dynamics and
interference is still an open problem.
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Level 3: Reasoning for Instantaneous Spectrum Access

� Open question4

� POMDP (Conventional model-based)
� Unknown network dynamics + Channel correlations

4Z. Yan, P. Cheng*, Z. Chen, Y. Li, and B. Vucetic, “Gaussian process reinforcement learning for
fast opportunistic spectrum access,” IEEE Transactions on Signal Processing, vol. 68, pp.
2613-2628, Apr. 2020.
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Gaussian Process Reinforcement Learning (GPRL)

� Enable the SU to directly interact with the unknown RF environment

� Incorporate GP with Bayesian inference into RL

� Enable a much more efficient Q-function approximation compared to DRL,
eliminating the need for a large number of training samples
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Experimental Results
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Vision

� GPRL only suit a single-user scenario.

� The multi-user setting is much more challenging.

� Due to interactions among users, it is highly desirable to develop a model-free
distributed multi-user method without coordination or message exchange among
users.
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Wireless Signal Strength Prediction
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Prediction Results
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Stream 3: Contextual Adaptation
� Envisioned to feature contextual adaptation, and meet the need for future massive

connectivity with its full intelligence
� Future networks demand automated extraction of far more features with no or

minimal prior information.
� Explainable ML56

5Y. Lu, P. Cheng*, Z. Chen, Y. Li, W. H. Mow and B. Vucetic, “Deep Autoencoder Learning for
Relay-Assisted Cooperative Communication Systems,” IEEE Transactions on Communications, vol.
68, no. 9, pp. 5471-5488, Sept. 2020

6Y. Lu, P. Cheng*, Z. Chen, Y. Li, W. H. Mow and B. Vuceti, “Deep Multi-Task Learning for
Cooperative NOMA: System Design and Principles, IEEE Journal on Selected Areas in
Communications, vol. 39, no. 1, pp. 61-78, Jan. 2021.
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Standardization

� Ericsson Spectrum Sharing78

7https://www.rcrwireless.com/20200312/network-infrastructure/outlook-for-dynamic-spectrum-
sharing

8https://www.vodafone.com/perspectives/blog/dynamic-spectrum-sharing
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Development Roadmap

� DAPRA ML-based spectrum management9

9https://archive.darpa.mil/sc2/
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Wireless AI
� A Data Life Cycle Perspective1011

10D. Nguyen, P. Cheng*, M. Ding, et.al, “Enabling AI in Future Wireless Networks: A Data Life
Cycle Perspective,” to appear in IEEE Communications Surveys & Tutorials, Sept. 2020.

11P. Cheng, C. Ma, M. Ding, Y. Hu, Y. Li, and B. Vucetic, “Localized small cell caching: A machine
learning approach based on rating data,” IEEE Transactions on Communications, vol. 67, no. 2, pp.
1663–1676, Feb. 2019.
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Wireless AI

� System Perspective1213

12Y. Xu, P. Cheng*, Z. Chen, Y. Li, and B. Vucetic, “Task Offloading for Large-Scale Asynchronous
Mobile Edge Computing: An Index Policy Approach,” to appear in IEEE Transactions on Signal
Processing, Dec. 2020.

13Z. Yan, P. Cheng*, Z. Chen, Y. Li, and B. Vucetic, “Two-Dimensional task offloading for mobile
computing networks: An imitation learning framework,” submitted to IEEE/ACM Transactions on
Networking, Dec. 2020.
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Wireless AI

� Application Perspective
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